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Abstract
A novel electrical circuit designed according to the theory postulated in this
paper delivers a prescribed immittance response. A drivipg-point function F(s)
is realized by a single-T circuit andfor s singie-= cirzuit, implying 2 negative
resistor but otherwise positive elements; a positive real immittance function F(s)
is realized £y the same circuits 2ugmented by an immittance kf(s) of low rank at
§ the input.
The circuit has high reliability and a rugged stability in the face of environ-
N mental changes. In addition, iis low weight and small size fuifill requirements for
military appiications.
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A New ldea for Realizing Positive Real
Immiitance Functions of Even Rank

1. INTROBUCTION

The positive real {PR) function originally defined by Oito Brure (1931}
represents a general class of rational functions composed of several subclasses.
The subclass treated in this paper,

V.. v-1i
N(s) s +N__,s° "+...+N;s+N,
v-1 ’

= (1}
D(s) s'+D, _ s +...+D;s+D,

ol
[
"
"

t

is a function of even rank (2v), and denoted as a functicn of the ER class. Ail its
coefficients Ni angd Di are nonnegative. For convenience we assume that the
polynomials N(s) and Dis) are rormalized® by N, =D =+

The furction

- R(s) s"+'f\‘v-ls”'i+...+ﬁls+§o
F(s) = = — —_— , {2)

D) s"+D _;s""'+...+Dys+D

{Received ioc publicution 4 December 1969)

*Unless otherwise stated, the term polynomial as uged in this paper always
includes normalization in this sense.
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concidered as belonging to a subclass of the ER class, is denoted as a function of
the H class. This function F {s), treated in Sec. 1, has some properties that F(s)
does rot have.

We will show that the function F{s} can be realized by the circuits in Figure 1,7
where it ic the driving-point immittance. The {erminating immittances Z(s) and

the immittance branches X(s) are positive. Onae uf the resistances {conductances)

Ru, Rv. Rw is negative; it has to be realized by any suitable active device. If

the degree v is an even one, then X(s) and Z(s) are Pk functions of rank »-1; if

the degree v is odd, then one irnmittance is of rank ¢ and the other is of rank v-2.

We shall later assume that F(s) is known by its coefficients, and design the circuit.
In Sec. 2 we will show that it is possible to derive an H-class function F(s)

from an ER-class function F{s) of the same rank by adding an impedance of low

rank in series or in shunt to the eircuit that realizes F{s). Far any degree v the

circuit realizing F(s) must be a single T or single 7, terminated at Loth ends.

3. REALIZATION 3D DEFINITION OF AN B-CLASS FUMCTION Fis)

2.1 The Norm Function Fis) aad lts Reafizition

Congider the circuits in Figure 2. With 7 a positive constant and V a positive
imraittance, let

U = V(5-1) (3a)
and
W = -V(fi-1)/5 . (33)
Then
WU+ 1/V+ /W =UV+VW+UW =0, - (1)
U+V =0V, (5a)
V+W=V/i, (5b)
U+W=v@E-103/5. (5¢)

* In this figure, as in all others ir this report, the terminated- T circuit @)

implies impedance branches, anc the terminated-= circuit (b) implies admitiance
branches. )
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Figure 1. Terminated-T Circuit fa) ard Terminated-= Circuit (b)Where

F(s) is the Driving-point Immittance

P L, W
\']
e
Fis}
— b
32
s ]
c- e
(b
{IMPEDANCE NOTAYTIONS) (ADITTARCE NOTATIONS)
Figure 2. Notation {3} for Terminated-T Circuit {(impedance Branchea)
and {) for Terminated-¥ Circuit {Admittance Branches)
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{ii¢ driving~point immittance of each of the circuits in Figure 2 is

Fis)

Z{GHVI+ X{U+W)+ XZ \'Zﬁ2 +VXin- 1'12 +3Zn %)
= — = = = > - .
WHWIE X+ V+Xn+Zn

W o Aot 5 ¥ B b < el iy

S With positive constants v, x, and z, normalized PR {unctiors ${s) and &{s}, arc
:‘ : £(s) = 1 (dummiy function), we introduce

L

e ¥ = vils) , Ga)
> X =x9(s), Gio}
E Z=z28ts)=z, e
. and set

2 -2

: z =14 . - {7d)
Then by substitution in Eq. (6),

. 2. -

z = é(s)+x(n-1)"6()D{s) &+ xP{s)/vh

E Fls) = =y i as v - @
=L IEN .

=]

i We dencte the form of the functior presented in £q. (8) as the nerm. Its realiza-
2 i ; tion according to Figure 2 needs an inverter circuit for U (which is negative if

s g T < 1) or for W (which is negative if n > i), In both evepts the inverier prescnts
= i the technical disadvuntage of being frequency-dependent since U and W imply éis).
:. . 2.2 Imxittasce Functions F:\(s) aad ?a(s:- 10 be Realized

: In an earlier paper {1966} we showed that F{s) reinains invariant when in any
. pair of the functions é{s), ®(s), and ¥{s), the functicns are interchanged, or when
{ ) the functions are replaced by their inverses and then interchanged, provided that
g’ th2 original constants §l, v. x are at the same time iransiormed to new constanis
3 - £, v', ané x’, For our present purpose we interchange $(s) and £{s) and obtain
“ f‘ﬁ(s) = F(s). We then interchange the inverses of tiese functions and obtain

é : ?B(s) = l/f(s). The transformation formulas are iisted in Tahle 1. What wo
S

have echieved is that in F, (s) and Fg(s}, V! = v'; concomitantly, U'and W' become
mere.constanis and thrs independent of frequency. But ${s) and @ (s) bacome
associited with the constants z' and x*, which are cerwinly positive. Equivalent
block circuits realizing Fis) = F, (s) aud Fis} = Fgls) ar: presented in Figure 3.
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Table 1. Transformaticns of the Constants of F(s) for Fa(s)
(p=—=&, @) and 1/Fg(s) {1/9~>1/E, 1/D)

i?A(s) = F(s) ‘ }/F‘B(s) = F(s)
& | a/E-1) B/ @ 1)
u' 1/i n
v (7-1)/n n{n-1;
w' (1-f)/5 1-
x! x(fi-1)/n2 */x
2 | v@-n2/a 1/vii

2.3 The PR and Yormalized Functions &(=) and d(s)

Let a(s} and b(s) be two polynomials of degree Voo and let «(s) and 3(s) be two
polynomiials of degree i, » Assume that

o(s) = s%’;—% ie PR ©)
and

@ (s) =i:-§°8;) is PR . (10)
Substituting these functions in Eq. (&) yields

Fls) = sza(s).'?(s)-!-x(ﬁ-l)2sa(s)B(s)+xb(s)d(s_)/vﬁ ) an

s?‘a(s)a(s) +sa{s)b(s)/vi+xnbis)ji(s)/v

The polynomials in the numeratur and denominator of Eq. (11} are of degree

o T, and normalized. Their degrees are the same as those of N(s) and D(s)
in ¥q. (2) when we provide that

2+y

for even degreev, v, =v, = -;— w-1); (12)
for odd degree v, v, = %- v-1), {(13a)

Vg =5 -3 (13w
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For example,
ifv=2 §s)= 1/P(s)=5; ) ‘ (14)
ifv =3, ¢ls) = s{ata ) (s+b ), (15a)
P(s)= 1/s5; ) (15b)
ifv=4, ¢(s)= S(s+a°)/(s+ba) , . (162)
®(s) = (sta )/ s(sHB ) (16b)

The results of a comparisen of the coefficients in the expressions for F(s) given in
Eqgs. (2) and (11) are listed in Table 2, from which impedance and admittance
realizations of ¢(s) and ® (s) can easily be found.

Table 2. Coefficients of N(s) and 5(s) for Ranks 2, 3, and 4

N, v=
t 2 3 4
Yo NB b NB hoBGNB
Nl NA aONA+NB aOBONA + (bo-l-ﬁe;NB
Nz 1 ao+NA aoao+(ao+B0)NA + NB
N3 - 1 a°+ ao+NA
N4 - - 1
D.
i
D Db boDB boBoDB
Dl Da boDA + DB u'obol:“A M (bo+Bo)DB
D, H a_+D, ; = .3
b4 (5} A a @+ (ao+bo)DA F DB
D3 - 1 a.0 + ao + DA
D, - . | 1
— 2 — -
NA=>:(!'1~1). NB=x/\m;
= - = o
DA = 1/vi, Dy = xii/v .
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3.4 Derivation of the Constaats @i, v, , und of the Functions &(s) and

®(s) From the Coefficients of N(s) and D(s) of F(s)
_ Assume now that we know the 2v coefficients K‘o, ces "ﬁu-{‘ and 50, caes
Dv-l . We want to find the three constants fi, v, x, and the v, +v_ coefficients
of ¢(s) and & (s), a total of 3+v_ +v, unknowns. Table 2 offers 4+ v +v meaning-
{ul equations, one more than we need. This surplus equation holds only when the
system of enuations is consistent, which is the case if (a) the proposed coeiffi-
cients are actuaily those of an H-class funciion F'(s), and (b} if our assumptions
are correct. [We shall test both conditions later.] Unfortunately, as a glance
at v = 4 shows, the eguations in Table 2 are nonlinear. The more v increases,
the more complicated they become. To be able to cope with any degree v, we
have to find another way of determining the unknowns.

Ncte that for any degree v,

N, =xb B [vh . (172)
D, = xnooﬁo,’v . (17b)
Therefore,

ﬁ=+\f5°/_ﬁ°. (i8)

Thus, the constant §i is immediately known.
Let us define the polynomials:

P(s) = sa(s) - b(s)/vn{i-1), (19)
Q(s) = sals) + xn(fi-1)8(s) , (20)
d(s) = [N(s} - D(s))/@-1) . (21)

The polynomizls P(s) and Q(s) are normalized, but d(s) is not. The degrees vp
and Q are defined as follows:

If v is even, vy =vQ=§l-u . (22)
1
Hvisodd, vp =y b+ vg=z0-1). (23)

The degree of d (s) is v-1. (2;1)

L v,
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Since the coefficients of ¢(s) and ®{s) are positive,
P(s) has only positive coefficients if n < 1, (25}
Q(s) has only positive coefficients f n > 1. (26)
From the identity of Egs. {11) and (2) it follows that A
P(s)Q(s) = [ BN (=) - D(s)]/ (-1
=5’ +(PQ) _ s 4.+ (PQ) s+ PQ, . (27)

The polynomial product P{s}¥Q(s) is krown in its sum:ation form. By solving the
equation P(s)Q{s) = 0, we can transform it into the product form. In this form it
consists of the product cf some linear polynomial factors (corresponding to the
real roots) and some quadratic polynom.al factors, each of the latter having a
negative discriminant {correspcnding to the conjugate complex roots). From this
product we are able to attribute some factors to P(s) and others to Q(s) according
to the information given by Egs. {(22), (23), (25), and (26). But some ambiguity
may remain since some factors may be either in P(s) or in Q{s). As we shall s.e
later, this ambiguity can be clearsed by using the surplus equation.

As an example, assume thst for a biquartic function F(s) (v=4), with n > 1,

P(s)Q(s)

s+ Q) s’ + (PQ),s? + (PQ)s + PLQ,

(s-s_l)(s‘l-s I)(s+52)(s-1-53) , (28)

whkere Sy» Sp» So» and Sz are positive, and s, < 8y < Sg. It is clear that (s-s_i) is
a factor in P(s) only when n > 1. One of the other three factors is also in P(s).
We thus have three choices for distributing these factors over P(s} and Q{s), as
shown in Table 3.

Table 3
Clei
cice Po Pl Qo Ql
No. 1 -5451 sl~-s4 5253 sz‘l-s3
No. 2 =SS, S9-S5y sls3 si-i~s3
No. 3 ~S;83 5378, | §:5, s;sy
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As another example let us consider a bicubic function F(s) (v=3} for which we
mzy have found that

lﬁ

e caia SO RIS PRI JATRE I o

H
kS
3
i
3
?
:

e P(sXQ(s)

1
H

T

ik T g

sS4 (PQ),s” + (PQ),s + P.Q,

n

(s-s d)(s+s Pists,), 29)

*

where Sg» §4. and S, are pcsitive, and $| <%,. In this example, if n < 1, then
, (5-53) is 2 factor in Q{sj and the other two factors are in P{s). Butif n > 1. then
we are left with the two choices in Table 4.

2 KRG N

L e s P A

: Table 4 -

. [

5 Choice P, P, W :
. No. 1 ~5483 S5-S, i Sy a
No. 2 “84S3 Sp=Sg £y i
E ' i
E Before going on to clear these ambiguities, we find by some trivial algebraic

3 cperations that 3.
; d(s) = (*+1)P(s)Q(sj/B - s{als)P(s)/h + a{s)Q(s)} ,

P k
;:nﬁz 3
E and by erdering this equation we get 3
’ a{slQ(s} = -a(s)P(s)/f + (A+ 1P (sKAs)/[sii - d(s}] /s . (30) 3
E 3
P The only unknowns in Eq. {30) are the positive coefficients of a{s} and efs). On 3
; both sides of this equation there are normalized polynomials of degree y-1. 2
A Comparing coefficients yields v~1 meaningful equations by which we are able to ;"
2 determine the v-2 unknowns. Here we also have a surplus equation. 1in contrast 3
v to the results of the earlier coefficient comparison, however, the equations de- g_
o rived from Eq. (30) are linear and can be solved by applying Cramer’'s rule. On é
L the right side of E1. {30) we have a comparison in s~ ! that has no maich on the 3
5 left side. It yields the triviality %
3 ('!'1+1)P°Qo -nd, = 0. 31 ;g
A 7
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When all the unknown coeificients of a(s) and afs) have been Jdetermined, we fingd
the remaining unknowas v and x by

1/vafi-1)=a_ _. . -P , {32)
v, 1 v,
xA@E-1) =Q ~a ;. (33)

a -4

The coefficients of b(s) and 8(s} can be cbtaired by comparing coefficients in
Eqgs. {19) and (20).

2.5 Iastruclions for Solving the Systen of Linesr Equations

We assume familarity with Cramer’s rule (see Hildebrand, 1956, among
others). The derivation of the matrix system to which the rule is aprlied deserves
some dizcussion. These matrixes can be written almost immediately since their
elements have {0 he mken from the coefficients of P{s) and Q(s) for each of the
possible ambiguous choices.

Each equation derived from (30) is a comparison of coeflicients associated -
with s’ and has the form

v

Va a .
,Z':o 249 ¢ L e Fyfn s (B DEQ, /AT, Sa

where, by definition,

a5 = 0 fori-j>v, ,

34a)
@y = 0 for i-k> Vo e (34%)
P, =0fork<0, (34c)
Qj =Qforji<o. 34d)

Suppose we write these equations in Sequence, starting with i = y-2 at the top

and ending with i = I at the bottom (we need only these equations io determine the

v -2 unknowns}. Because of th2 normalizations there are some constant terms

that we must transpose te the right cide, obtaining
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12
v-1 v,-1
j},:o 2 @+ kzs:a o (P fo=Ci=a,, -G, . (35)
where
0., = @ DEy,, - (Pi*""a+;Q‘:*““a) H (33a)
Tpy =Ny, -D MG -1 (35b)

From the left sid: of these equations we derive a square matrix iQi, i P !
-of y-2 rows and c~lumns. Tuls matrix has a greup of columns listing the co-
efficients of Q(s) anc ansther group listing the coeificients of Pis). The first
column in each group lists the coefficients sequentially downward, starting al the
top with Q‘.Q = land Py, 5 1. The list is repeated from one cclumn @0 the next
but shifted downward by one position. Tae places thus vacated then contain zero
elements.

From the right side of the eguations we cerive 2 column matrix !}Ciﬁ of »-2
rows. The difference between two column matrixes, this matrix is expressed by

BCil = Bk - 194 - (362

With these column matrixes knowr, we can apply Cramer's rule to get:

8 =det|Q . P .| ; (37a)
o, =detlQ .. P i, 370)

3
with column j replaced by (36);
Aak = det [Qi’j. Pi’kl , (37¢c)

with coiumn k aiso replaced by (36) .

Then
aj = Aa./é ; (38a)
3
and
afi =a, 1a, (38b)
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2.6 The Equation of Consistency and the Definition of H-Class Fuacticas Fe)

As used here, the surplus equation in our system is the one that compared
the coefficients associated with s°. When w- substituie the coefficients obtaired
through Eqs. (38) we obtain

=6, {39}

for which Ai and 'di are giver. by Eqs. (35j,and c; are the determinants multiplied
with cofactors of a square matrix that is obtained when the square matrix-of v~2
rows and columns is exlended by the row i=0 and oxe vow is deleted. Assume, for
example, the degrec r=6. The extended matrix in this case is then

Nt ol 1 o ox

4 iQ3=x 0 P,m1 0 i
shae 1 p 1 o)
2 h Q @ Py P3k
! ‘ Q, Q P Py
oflo q o Pl‘

The coefficients +tep -¢y, teg, mcy, and +cg are obtainad by respectively deleing

the consecutive rows 0, 1, 2, 3, and 4. ‘fThe coefficient S, is defined as

-l
Co =t :*ici.':‘.o . “n
” -‘-‘l=} o

with A = ('EH)P\}QO,"E; according to (352). By (31) we canadd {A_ - a’o)co on the
left side in {1 1) and obtain

y=1

5= - Eici = 0 as the Equation of Consistency. - {12)
(4]

e
"

Equation (42) yieids é = 0 only if (a) the proposed ceefficients :\;i and §i are those
of an H~class function F(s), and (b) the correct choice has been made in selecting
the factors of P(s) and Q{s) from the product P{.)Q(s) in Eq. {27}. Thus, this
equaticn also defines the H-class function.
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Compact formalas for the coefficients of ¢; can b~ given for the relatively
low degreesr = 3and » = 4.

Forv' = 30
¢y =-Q. ¢;=1 ¢, =-[AP +Q (P, - Qonl(m-npoqo . (43)

FO!‘U‘=4.
3= PQ, - PR, ¢, =P -Q, =,=Q -P,,

e, = - [Epo(c2 +¢,Q)+Q(c, +c P [(a+ NP Q- {14}

2.7 Numerical Example No, 1 {Biguartic H-Class Function)

Let the function F(s) of degree v =4 have the coefficients listed in Table 5,
from which we compute the coefficients of d(s) by Eq. (21). Withn = 2.0, we usa
Fg. (18) to obtain

4 3,...2 .
P(s)(s) =s” + 155”7 + 635~ + 415 - 120

. = {s-1}{5+3){st-5)(s+8) . {45)
Tabie 5
i N, D. d.
1 1 1

0 60 240 ~-180
1 118 195 ~7%
2 73.5 88 -12.5

- 3 15.% i% -2.5
4 1.0 1.0 0

The threc choices for selecting Pfs) and Q(s) from this product are listed in
Table 6 together with the cocfficients c; computed by (42) and & by {32) for each
of the choices. According to the last column in Table 6, the correct choice is
No. 2, for whick by Egs. {37} we obtain:

s <-1, Aa = -45.5, ba = -49. {46)
3] (]

y‘,;‘zu;a.,a"” OB P NLS
'

e

1Ty tseomie g

B E T TR N e e e T A

EAFERTTTUL AT ) B 7 oA

s

Cartep b

PRV I

PPTE .

-

e e L T
N .

- - - - - — e e e e o S e e Y mmen = o g




rrgs AR NI e P00 IR YA RTINS e ) NI P8

FENYRTINY

%o oy

L}

TP TR S A T AL T TR NN S M s AT TR L PP 1Y

SR

15
Table 6
Choice b 1 Qo Q1 cg ¢y <, 3
No. 1 2 40 13 116 -43 -4 }-351
No. 2 4 24 11 151 -29 -i4 o
No. 3 1 15 8 169 -~23 0 j-12¢
Then, by Eqs. (38), we {find
a_=6.5, o (462}
(0]
and by (32]) and {33),
va20.2, x=2. (46b)
Coefficient comparison in (19) and (20} yields
= = )
b, =2, 8, (4€c}

The two equivalent circuits rezlizing the impedance F(s) are shown in Figure 4.
Their elements computed according to Tsbles 1 and Figure 3 are listed in Table 7.

Table 7. Circuit Elements in Figure 4 for Examples Nos. ] and 2

Examgle No. 1 Example No. 2
Fy(s)sFis) | 1/Fg(e)=Fls) | Fo(s)=Fis) | 1/Fyis) = Fis)
R, 0.5 G.5 0.274358% . 2745587
R, 0.5 0.5 0.7254412 9. 1036128
R, -0.25 -L0 -0. 1981762 -0. 3784734
R, 2.0 2.9 2. 3095879 0.3308403
R 1697182 338/90 1. 6368349 3. 1143057
L, 0. 325 1.3 0. 3733889 0. 7095074
L, 13/96 52790 0. 27080€1 0.5143811
<, 6.3 0.5 0. 3654515 2.5513118
c, e.5/6 6-5/6 0. 95795116 0.5573634
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R
o —t A 1
Rs
L2
Fis)
—
::R4
1 SR~
=C ::aa
~-2
O
R C2
P4 i
w1
<
o~ = -~
, 1 1
Ra

o

1,

Figure 4. Two Ecuivalent Circuits Realizing the Driving-point Impedarce
F(s} [v =4; grounded regative resistance R}

3. Reslization of ER-Cluss Fuactieas s>

If a PR function F(s) that is of even rank and hae known coefficients is treated
2s discussed in Sec. 1 and Eq. (323 does not yield & =@ for any of the possible
cnsices, then the function F(s) is not an i-class fonction. An H-class fonction
c2n, however, be obtained by splitting 3 suitable PR {unction H(s) from Fisl.
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It can easily be shown that d{(s), defined in (21), is
da(s) = [N{s) - D(s)]/(n-1}{1-K). (53)

But then Eq. (42) can be expressed as
6=- 2 cd. =0, {54)

where this time the coefficienis c; are derived from (52) instead of frem (27), and
n is derived from (50). Since

1/k =02 (n¥(1-2/n )+ 1] /@02 -n?), (55)

the constant k can accordingly be replaced by n,. Instead of solving directly for
k it 1s more convenient to first determins ng The H-class function F(s) in

Eq. {48) has Leen found when, after a search with trial parameters n,. Eq. (54)
yields 6 =0. We show this in Sec. 3.2.

3.2 Numerical Example No. 2 {Biquartie H-Cless Function)

Let a biquartic ER-class impedance function be described by the coefficients
listed in Table 8. The table also lists the coefficients of

d(s) = [N(s) - D(s)]/(n~1). (56)

The function F(s) is PR. The minitmum of Re F(ju ) is F(0) = )./n2 = 0.4. We dis-
regard that F(s) - F(0) can be realized by the well-known ladder procedure. But
we want to point out that any positive constant 0 < k < 0.4 can be subtracted from
F(s), and so the value n, can range between 2.5 and \/2_5 = 1.5811388.

Let us first test whether F(s) is an H-class function. (This can he done
either b; subtracting the constant k = 0 or letting n, =V‘5.—E;.) If we treat F(s}
as though it is an H-class function, Eq. {55) will yield the solutions

= 1.2143093, s = 3.2212775, S; = 4.7705955, s, = 8.1341325. (57}

54 3
With these solutions we obtain the resuiis listed in Table 9. As the last column
in Table 9 shows, F(s) is not an H-class function. We therefore use a series of
trial parameters n, to compute the 8y 6‘.. 63 for the possible choices. Some of
the results are presented in Table 10. As the table shows, choice No. Z is the
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Table 8

i Ni Di di

0 96.0 240 -247."7893405

1 133.4 195 -105. 9987734

2 78.0 88 -17.2075930

3 15. 6 16 -0. 6883037

4 1.0 1 0
i J
Table 9

Choice[ P P Q Q & -
[s) 1 ] 1

No. 1 {-3.9116272 { 2. 0069682 | 18. 8046559 | 12.9047280 | -336. 1362632
No. 2 |-5.7929785 | 3.5562862 | 26.2022980 | 11.3554100 | ~12. 7247050

No. 3 {-v.8773527 | 6.9198232 | 15.3674119 | 7.9918730 | -2G1.7706416 !

Table 10

n, 1.6 1.66 1.68 1.88 1. 89

] 1 -409. 7952392 {-476. 4259531 }-496. 3981346 |-651. 3761346 | ~665. 1590852

&, -8.4908898 -0.5233455 +0. 3875778 ). 3571147 -0. 0203837

3 -195. 0626017 {~175.4795503 | -169. 4798472 {-150. 4249847 | -138. 3943812

2

correct one. The value 8, changes its sign of polarity from n, = 1.66 to .68
and again from 1. 88 to 1.89. The exact zero crossings of 6, can be found by any
well-known interpelation formula (we suggest the one by Aitken in Abramovitz and
Stegun, 1964). The results of interpolaticn, together with the constants ¥, B, and
n, are pr-sented in Table 11.

For K = 0.2 and k = 0. 8 the function F(s) is the same¢ as in Example No. 1.
The impedance functicn has the same equivalent realizing cirsuits shown in
Figure 4. But since we want to realize KF(s), the resistances, inductancee, and
inverse capacitances listed in Table 7 have to be multiplied by K=0.2. Finally,

to obtain the impedance F(s}, both circuits have to be augmented with a series
resistance Ro =k=1-K = 0.8.
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Table 11
n, 15/¢ 1. 8894704
8, -0. 0000013 +0. 0000020
n 1.5611388 1.5811388
n 2.0 3. 6422085
K 0.2 0.3510830

With K = 0. 3510830, the constanis obtained for ¥(s) are:

n = 3.6422085, v =0.08i8905, x =9.3919552, (58a)

and the coefficients

a = 6. 0443381, a, = G.©029088, bo = 2.5409135, Bo = 5.4181825. (58b)

The impedance realizations of F{s) are again those shown in Figure 4, with
the circuit elements listed in Table 7. The element values have accordingly to
be multiplied by the factor K and the circuits have to be augmented with a series
resistance of Ro = 1-K = 0.6489170 at the input to obtain realization of the im-
pedance F{s). We have thus found four equivalent circuits.

We want to point out that if £(s) < 1, the constant k does not necessarily have
to be positive. Since we have accepted one negative resistance in the realization,
we can as well accept a second. There is also the chance that this second nega-
tive resistance may be cancelled out by a positive one if F(s) is part of a larger

circuit.

3.3 The Function F(s) Obtained by Subtracting ki(s) From F(s)

if trials with an assumed function £(s) = 1 fail to yield an H-class function, we
have to find a more costly function f(s) = n(s}/d(s). Considering th: decompositica
[Eq. {44)] only, let d(s) be a part of D(s),

D(s) = d{s)D'(s) . (59

Assume that the degree of n(s) is one order less than the degree of d(s). Then
according to (44),

KF(s) = (1- K)N(s)/D(s) , (60)
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with
N(s) = [N{s) - kn(s)D*(s)]/(1-K); (69a)
D(s) = D(s) = d{s)D'(s) . (60b)

We can alsc allow n(s) 10 be of the same degree as d(s), changing (60) and (60a)
accordingly. We always have to ensure that KF(s) i1 {44) is PR, which is true
when

Re F(jw) - Re ki(jw) >0 . (61)
Let us now consider the fcllowing example.

3.3 Numericai Example No. 3 (Bicuhic H-Class Function)

For the coefficients of 2 bicubic impedance function F{s) listed in Table 12,
we find that the denominator of F(s) is

2
= < ' ]
D{(s) {s+so)(s +Dis + D)), (62)
wuere
S, = 0. 5207709, 'l = 0.4792291, D(; = 3.6004314 . (623.)
Tabie i2
i Ni D1
0 1.74 1. 875
1 C. 192 3.85
2 7.95 .6
3 1.0 1.0

We have chosen {{s} = 1/(s+so). In Figure 5 we compare Re F(jw) and Re {(jw)
versus 2= w 2, Since F(0) = 0.928, and f(9) = 1. 9202303, the constant k must be
fess than 9. 483. Factorization of P(s)Q(s) alleaws two choices, 6! and 62, whose
values for a series of parameters k are listed in Table 13.
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§ Table 13
: k 0.48 ]l 0.40 0. 399 0.3995
:: 61 ~0.2067047 i -0. 0007434 | 40.0115423 | +0.0053377
: 62 ~-0.5809142 i -4,0111988 | -4.0452474 -4.0287214
) 1 - J
. Being satisfied with the small &, =-0. 0007434 for k = 0.40 we go on to obtain
: N°=0.3, N1=8.0, N2=7.55, N3= 1.0. (63)
: The constants for F(s) are
n=2.5 v=2.0, x=3.0. (64)
The coefficients of é(s) = s(s+a o)/ (s +bo) are
a,=0.8 b =0.5 $s)= 1/s. {65)

The two equivalent circuits realizing the driving-point impedance F{s) are shown
in Figure 6, and the element values are listed in Tahle 14.

Table 14, Example No. 3

T Circuit = Circuit
R o 0. 7680920 0. 7680920
R 1 0.24 0.24
R2 0. 36 0. 16
RS -0. 144 ~0. 4
R.1 2.304 6.4
Ll 1.728 4.8
L2 2.88 8.0
Co 2.5 2.5
c, 1/4.95 1/1.8
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L. COMMENTS

it must by now be apparent that the driving-point realizations discussed in thus
paper have some similarity to the well-known Brune realizations (1831). Our
realization, however, is a single terminated two-port, whereas Brune's is a cascade
of several two~ports. The single two-port ailows us to induce the negative resist-
ance. Where application of the Brune cycle requires that a duplex zero appear
for the real component Re F(juw), our method requires that either Eq. (42) or (54)
yield 6=0. The Brune realization allows fransforming the circuit inio a Bott-
Duffin (1949) circuit. We have not yet found a similar equivalent for our circuits
even at the expense of using more elements o avoid the negative resistance. We
can get a Bott-Duffin equivalent only when é(s) = 1/®(s}; in such case, however,
F(s) is nothing more than a frequency-transfcrmed biguadratic function. Although
this event is almost trivial, cur realization procedure at least offers the ‘zieans
of discovering the transformation. Whether an H-class function can always be
derived from an ER-class function by splitticg off a proper function kf(s) will have
to be desermined empirically through a computer-aided design.
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